Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Añadir filtros

Tópicos
Tipo del documento
Intervalo de año
1.
J Vis Exp ; (183)2022 05 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1893007

RESUMEN

Newcastle disease virus (NDV), also known as avian orthoavulavirus serotype-1, is a negative sense, single-stranded RNA virus that has been developed both as an oncolytic virus and a viral-vectored vaccine. NDV is an attractive therapeutic and prophylactic agent due to its well-established reverse genetics system, potent immunostimulatory properties, and excellent safety profile. When administered as an oncolytic virus or a viral-vectored vaccine, NDV elicits a robust antitumor or antigen-specific immune response, activating both the innate and adaptive arms of the immune system. Given these desirable characteristics, NDV has been evaluated in numerous clinical trials and is one of the most well-studied oncolytic viruses. Currently, there are two registered clinical trials involving NDV: one evaluating a recombinant NDV-vectored vaccine for SARS-CoV-2 (NCT04871737), and a second evaluating a recombinant NDV encoding Interleukin-12 in combination with Durvalumab, an antiPD-L1 antibody (NCT04613492). To facilitate further advancement of this highly promising viral vector, simplified methods for generating high-titer, in vivo-grade, recombinant NDV (rNDV) are needed. This paper describes a detailed procedure for amplifying rNDV in specified pathogen-free (SPF) embryonated chicken eggs and purifying rNDV from allantoic fluid, with improvements to reduce loss during purification. Also included are descriptions of the recommended quality control assays, which should be performed to confirm lack of contaminants and virus integrity. Overall, this detailed procedure enables the synthesis, purification, and storage of high-titer, in vivo-grade, recombinant, lentogenic, and mesogenic NDV for use in preclinical studies.


Asunto(s)
COVID-19 , Virus Oncolíticos , Vacunas Virales , Animales , Vacunas contra la COVID-19 , Pollos , Humanos , Virus de la Enfermedad de Newcastle/genética , Virus Oncolíticos/genética , SARS-CoV-2 , Vacunas Virales/genética
2.
iScience ; 24(11): 103219, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1587475

RESUMEN

The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19). Worldwide efforts are being made to develop vaccines to mitigate this pandemic. We engineered two recombinant Newcastle disease virus (NDV) vectors expressing either the full-length SARS-CoV-2 spike protein (NDV-FLS) or a version with a 19 amino acid deletion at the carboxy terminus (NDV-Δ19S). Hamsters receiving two doses (prime-boost) of NDV-FLS developed a robust SARS-CoV-2-neutralizing antibody response, with elimination of infectious virus in the lungs and minimal lung pathology at five days post-challenge. Single-dose vaccination with NDV-FLS significantly reduced SARS-CoV-2 replication in the lungs but only mildly decreased lung inflammation. NDV-Δ19S-treated hamsters had a moderate decrease in SARS-CoV-2 titers in lungs and presented with severe microscopic lesions, suggesting that truncation of the spike protein was a less effective strategy. In summary, NDV-vectored vaccines represent a viable option for protection against COVID-19.

3.
iScience ; 2021.
Artículo en Inglés | EuropePMC | ID: covidwho-1451806

RESUMEN

The pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of Coronavirus Disease 2019 (COVID-19). Worldwide efforts are being made to develop vaccines to mitigate this pandemic. We engineered two recombinant Newcastle disease virus (NDV) vectors expressing either the full-length SARS-CoV-2 spike protein (NDV-FLS) or a version with a 19 amino acid deletion at the carboxy terminus (NDV-Δ19S). Hamsters receiving two doses (prime-boost) of NDV-FLS developed a robust SARS-CoV-2-neutralizing antibody response, with elimination of infectious virus in the lungs and minimal lung pathology at five days post-challenge. Single-dose vaccination with NDV-FLS significantly reduced SARS-CoV-2 replication in the lungs, but only mildly decreased lung inflammation. NDV-Δ19S-treated hamsters had a moderate decrease in SARS-CoV-2 titers in lungs and presented with severe microscopic lesions, suggesting that truncation of the spike protein was a less effective strategy. In summary, NDV-vectored vaccines represent a viable option for protection against COVID-19. Graphical Abstract

4.
Biomedicines ; 9(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1408454

RESUMEN

Adeno-associated virus (AAV) vector mediated expression of therapeutic monoclonal antibodies is an alternative strategy to traditional vaccination to generate immunity in immunosuppressed or immunosenescent individuals. In this study, we vectorized a human monoclonal antibody (31C2) directed against the spike protein of SARS-CoV-2 and determined the safety profile of this AAV vector in mice and sheep as a large animal model. In both studies, plasma biochemical parameters and hematology were comparable to untreated controls. Except for mild myositis at the site of injection, none of the major organs revealed any signs of toxicity. AAV-mediated human IgG expression increased steadily throughout the 28-day study in sheep, resulting in peak concentrations of 21.4-46.7 µg/ mL, demonstrating practical scale up from rodent to large animal models. This alternative approach to immunity is worth further exploration after this demonstration of safety, tolerability, and scalability in a large animal model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA